X
تبلیغات
به نام خدا دل صفا مي پذيرد . چو دل با صفا شد خدا مي پذيرد >>>>> اللهم صلی علی محمد و آل محمد<<<<< رياضيات راهنمايي - توازی و چهار ضلعی ها دوم راهنمایی با نکات المپیادی و جوابهای تشریحی

خطوط موازی

 

 دو خط واقع بر یک صفحه را موازی می گوییم هر گاه آن دو خط بر هم منطبق باشند و یا هیچ نقطه ی مشترکی نداشته باشند .مانند دو خط1 d و 2 d که با هم موازیند.

 

می نویسیم:

میخوانیم: خط های 1 d و 2 d با هم موازیند.

 

توضیح تصویری:

 

چهار ضلعی ها:

هر چهار ضلعی دارای چهار ضلع و چهار رأس می باشد.

دو ضلع چهار ضلعی که در یک رأس  مشترک باشند دو ضلع مجاور نام دارد.

دو ضلع که نقطه مشترک ندارند ، دو ضلع مقابل نام دارد.

                 

                  

 

 

انواع چهار ضلعی ها :

1) متوازی الاضلاع: چهار ضلعی است که اضلاع آن دو بدو موازی باشند 

خواص متوازی الاضلاع :  در هر متوازی الاضلاع زاویه های مجاور مکمل اند  و زاویه های مجاور مقابل مساویند .

در هر متوازی الاضلاع ضلع های  مقابل با هم برابرند.

در هر متوازی  الاضلاع قطر ها یکدیگر را نصف می کنند.

 

 

2) مستطیل: چهار ضلعی که تمام زاویه های آن قائمه باشد به عبارت دیگر مستطیل متوازی الاضلا عی است که یک زاویه ی قائمه داشته باشد .

 

خواص  مستطیل: چون مستطیل نوعی متوازی الاضلاع است پس تمام خواص متوازی الاضلاع را داراست .

قطر های مستطیل با هم برابرند.

 

3) لوزی : چهار ضلعی که چهار ضلع آن مساوی باشند لوزی است .

خواص لوزی:  چون لوزی نوعی متوازی الاضلاع است پس همه ی  خواص متوازی الاضلا ع را داراست .

قطرهای لوزی بر هم عمودند

هر قطر لوزی نیمساز دو زاویه ی مقابل لوزی است .

4) مربع : چهار ضلعی است که چهار ضلع آن مساوی و چهار زاویه ی آن قائمه هستند .

بنابراین مربع هم نوعی لوزی، هم نوعی مستطیل و در نتیجه نوعی متوازی الاضلاع است. پس تمام خواص آن ها را داراست

 

ذوزنقه : چهار ضلعی است که فقط  دو ضلع آن با هم موازی باشند .

در ذوزنقه دو ضلع موازی را قاعده و دو ضلع غیر موازی را ساق های ذوزنقه می گویند  

 

خواص ذوزنقه: در ذوزنقه  زاویه های مجاور به هر ساق  مکمل یکدیگرند

 

انواع ذوزنقه :

 ذوزنقه قائم الزاویه :  ذوزنقه ای است که یک ساق آن بر دو قاعده عمود شده باشد 

 

ذوزنقه متساوی الساقین : ذوزنقه ای است که دو ساق آن با هم برابر باشد .

 

 

 

1- مجموع  زاویه های داخلی هر چهار ضلعی 360 است

A+B+C+D=۳۶۰

 

2-  مجموع زاویه های خارجی هر n  ضلعی 360 است .

 

3-  هر گاه از رئوس یک چهار ضلعی چهار خط به موازات قطرها آن رسم کنیم متوازی الاضلا عی بدست می آید که مساحت آن دو برابر مساحت چهار ضلعی اولیه می باشد .

 

4- مجموع زوایای داخلی هر n  ضلعی از دستور 180×( 2 n -)  بدست می آید 

 (n ضلعی محدب)

مثال Å  مجموع زوایای داخلی یک هشت ضلعی را بدست آورید .

                                                          1080 = 180×6= 180×(2-8)

  5- اگز خطی دو خط موازی را قطع کند 8 زاویه به وجود می آید : که کلیه ی زاویه های تند باهم و کلیه ی زاویه ها ی باز با هم مساویند .

 

 

 þتست1: 

 در شکل زیرAx  موازی با By می باشد ، اندازه ی زاویه c چند درجه است .

الف) 95 درجه

ب) 90 درجه

ج) 75 درجه

د) 85 درجه

 


 

þ تست2: 

 مجموع زوایای خارجی یک  n  ضلعی با مجموع زوایای داخلی آن مساوی است . n  برابر است با :

الف) 8

ب) 4

ج) 6

د) 5

 


 

þ تست3: 

مجموع زاویه ها ی یک 5 ضلعی ستاره ای شکل چند درجه است؟

الف) 360 درجه

ب) 270 درجه

ج) 180درجه

د) 240 درجه

 


 

þ تست4: 

 وسط های اضلاع یک لوزی را متوالیاً به هم وصل می کنیم . شکل حاصل کدام است؟

الف) متوازی الاضلاع

ب) مستطیل

ج ) مربع

د) لوزی

 


 

þ تست5:

 در شکل زیر مقدار x برابر کدام گزینه است ؟  ( d۱ || d۲ )

الف) 45 درجه

ب) 55 درجه

ج) 50 درجه

د) 65 درجه

 


 

þ تست6: 

در یک ذوزنقه متساوی الساقین قاعده کوچک با هر ساق برابر است و قاعده ی بزرگ دو برابر هر یک از آن ها است . اندازه زاویه ی حاده این ذوزنقه چند درجه است ؟

الف) 75 درجه

ب) 60 درجه

ج) 45 درجه

د) 30 درجه

 


 

þ تست7: 

در شکل زیر چهار ضلعی ABCD  مربع و مثلث FDC  متساوی الاضلاع است مقدار زاویه ی X  چقدر است؟

الف) 15 درجه

ب) 5/ 22درجه

ج) 75 درجه

د) 30 درجه

 

 

پاسخ

۱-

از C  خطی به موازی Ax  و By  رسم می کنیم.

۲-

گزینه ب

۳-

مثلث ABC  را در نظر بگیرید .

 

۴-

ب) مستطیل

۵-

 2X+۲۵+X-۱۰=۱۸۰

3X+۱۵=۱۸۰

3X=۱۶۵

X=۵۵

۶-

با توجه به شکل از B   به  وسط  DC  وصل می کنیم

 

 

۷-با توجه به شکل

 

نوشته شده توسط m-r  | لینک ثابت |